FORM 9-1642
(1-60)
WELL SCHEDULE
U.S. DEPT. OF THE INTERIOR
GEOLOGICAL SURVEY
WATER RESOURCES DIVISION

MASTER CARD

Record by:

Source of data: Bowe

State: MS

County: Sharkey

Latitude: 33° 00' 22" N

Longitude: 90° 05' 11.4" W

Sequential number: 1

Local well number: C056B0613N06W

Local use: M. B. Kline

Owner or name: CAMETA PLANTATION

Ownership: County, Fed Gov't, City, Corp or Co, Private, State Agency, Water Dist

Use of well: Acid cond, Bottling, Comm, Dewater, Power, Fire, Dom, Ir, Med, Ind, P, S, Rec

Water: Stock, Inst, Undr, Unused, Recharge, Recharge, Desal-P, Desal-other

Use of water: Anode, Drain, Seismic, Next Res, Obs, Oil-gas, Recharge, Test, Unused, Withdraw, Waste, Destroyed

DATA AVAILABLE:

Well data:

Freq. W/L meas.:

Field aquifer char.:

Hyd. lab. data:

Qual. water data: type:

Freq. sampling:

Pumpage inventory: yes

Aperture cards:

Log data:

WELL-DESCRIPTION CARD

SAME AS ON MASTER CARD

Depth well: 741 ft

Depth cased: 721 ft

Casing type:

Finish: porous gravel w. gravel w. boys, open perf., screen, ed. pt., shored, open

Method: air bored, cable, dug, hyd jetted, air reverse trenching, driven, drive rot., percuss, rotary, wash, other

Date Drilled:

Driller: Guy Davis

Drillers:

Lift type: (A) (B) (C) (D) (E) (F) (G) (H) (J) (K) (M) (N) (P) (Q) (R) (S) (T) (U) (V) (W) (X) (Y) (Z)

Power: nat LP
diesel, elec, gas, gasoline, hand, gas, wind, H.P.

Descrip. MP:

Alt. LSD: 41 ft below LSD, Alt. MP:

Water level:

Date meas.:

Yield:

Drawdown:

ACCURACY:

QUALITY OF WATER DATA:

Sp. Conduct:

Taste, color, etc.:

HYDROGEOLOGIC CARD

Physiographic Province:

Drainage Basin:

Subbasin:

Major Aquifer:
- System:
- Subsystem:
- Series:
- Aquifer:
- Formation:
- Group:
- Aquifer Thickness:

Minor Aquifer:
- System:
- Subsystem:
- Series:
- Aquifer Formation:
- Group:
- Aquifer:
- Thickness:

Length of Well Open To:
- Depth to Top of:
- Depth to Roof of:
- Interval Screened:

Depth to Consolidated Rock:
- Source of Data:

Depth to Basement:
- Source of Data:

Surficial Material:
- Infiltration Characteristics:

Coefficient Trans:
- Coefficient Storage:

Coefficient Perm:
- Spec Cap:
- Number of Geologic Cards:

Legend:
- Depression, stream channel, dunes, flat, hilltop, sink, swamp
- Offshore, sediment, hillside, terrace, undulating, valley flat

GFO 937-142
Date: 19 Driller: Guy Davis County: Sharkey

<table>
<thead>
<tr>
<th>M. Kline</th>
<th>Description & Color of Materials</th>
<th>Thickness Feet</th>
<th>Depth Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner of Land: E. Kirby</td>
<td>Clay</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Caneta Plantation</td>
<td>Clay & Sand</td>
<td>90</td>
<td>41</td>
</tr>
<tr>
<td>(Address)</td>
<td>Sand</td>
<td>80</td>
<td>12</td>
</tr>
<tr>
<td>(2) Location: W 1/4, NE 1/4, Sec. 6</td>
<td>Pegoda</td>
<td>80</td>
<td>281</td>
</tr>
<tr>
<td>½ miles West of Caneta</td>
<td>Shale</td>
<td>40</td>
<td>241</td>
</tr>
<tr>
<td>(distance)</td>
<td>Sand</td>
<td>150</td>
<td>491</td>
</tr>
<tr>
<td>(direction)</td>
<td>Shale</td>
<td>70</td>
<td>524</td>
</tr>
<tr>
<td>(Nearest Town)</td>
<td>Sand & Shale</td>
<td>20</td>
<td>581</td>
</tr>
<tr>
<td>(3) Topography:</td>
<td>Shale</td>
<td>20</td>
<td>601</td>
</tr>
<tr>
<td>Hilly</td>
<td>Shale & Benison</td>
<td>20</td>
<td>641</td>
</tr>
<tr>
<td>(Flat)</td>
<td>Shale</td>
<td>20</td>
<td>641</td>
</tr>
<tr>
<td>(Level)</td>
<td>Sand</td>
<td>25</td>
<td>686</td>
</tr>
<tr>
<td>(4) Purpose of Well: Domestic Irrigation</td>
<td>Sand</td>
<td>55</td>
<td>741</td>
</tr>
<tr>
<td>Municipal, Industrial, Other</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information upon completion of well:

(1) Diameter 4 X 2 inches.

(2) Total Depth 741 feet.

(3) Water Level 4 feet below top of ground. 185'-4" (?)

(4) Cased to 555', Size 2" (?)

(5) Screen: Size, Length.

(6) Were any formations sealed against pollution? Yes, X No.

If YES depth of formation: 7-1-62

Why: MUSIC

Drillers Remarks: Press 8 gpm
30 gpm with pump

(Use Back Side)
WELL CONSTRUCTION DATA

Method of Construction
- **Finish:**
 - A: Iron, steel, wrought iron, pipe, other.
 - B: Iron, steel, wrought iron, pipe, other.
 - C: Concrete, grout, cement, asphalt, other.
 - D: Sand, gravel, stone, other.
 - E: Water, mud, other.
 - F: Air, gas, vacuum, other.
 - G: Slurry, mud, other.
 - H: Mechanized, excavator, other.
 - I: Diesel, electric, other.
 - J: Waterjet, water, other.
 - K: Drift, drift, other.
 - L: Shovel, shovel, other.
 - M: Drill, drill, other.

Bottom of Well
- **Method of Development:**
 - A: Iron, steel, wrought iron, pipe, other.
 - B: Iron, steel, wrought iron, pipe, other.
 - C: Concrete, grout, cement, asphalt, other.
 - D: Sand, gravel, stone, other.
 - E: Water, mud, other.
 - F: Air, gas, vacuum, other.
 - G: Slurry, mud, other.
 - H: Mechanized, excavator, other.
 - I: Diesel, electric, other.
 - J: Waterjet, water, other.
 - K: Drift, drift, other.
 - L: Shovel, shovel, other.
 - M: Drill, drill, other.

Dimensions of the Hole Constructed
- **Construction Entry No.:**
 - A: Iron, steel, wrought iron, pipe, other.
 - B: Iron, steel, wrought iron, pipe, other.
 - C: Concrete, grout, cement, asphalt, other.
 - D: Sand, gravel, stone, other.
 - E: Water, mud, other.
 - F: Air, gas, vacuum, other.
 - G: Slurry, mud, other.
 - H: Mechanized, excavator, other.
 - I: Diesel, electric, other.
 - J: Waterjet, water, other.
 - K: Drift, drift, other.
 - L: Shovel, shovel, other.
 - M: Drill, drill, other.

Casing Schedule
- **Construction Entry No.:**
 - A: Iron, steel, wrought iron, pipe, other.
 - B: Iron, steel, wrought iron, pipe, other.
 - C: Concrete, grout, cement, asphalt, other.
 - D: Sand, gravel, stone, other.
 - E: Water, mud, other.
 - F: Air, gas, vacuum, other.
 - G: Slurry, mud, other.
 - H: Mechanized, excavator, other.
 - I: Diesel, electric, other.
 - J: Waterjet, water, other.
 - K: Drift, drift, other.
 - L: Shovel, shovel, other.
 - M: Drill, drill, other.

OPENINGS SCHEDULE
- **Construction Entry No.:**
 - A: Iron, steel, wrought iron, pipe, other.
 - B: Iron, steel, wrought iron, pipe, other.
 - C: Concrete, grout, cement, asphalt, other.
 - D: Sand, gravel, stone, other.
 - E: Water, mud, other.
 - F: Air, gas, vacuum, other.
 - G: Slurry, mud, other.
 - H: Mechanized, excavator, other.
 - I: Diesel, electric, other.
 - J: Waterjet, water, other.
 - K: Drift, drift, other.
 - L: Shovel, shovel, other.
 - M: Drill, drill, other.

FOOT NOTES:
1. **Source of Data Codes:**
 - **S** - Source
 - **D** - Driller
 - **B** - Bureau
 - **A** - Agency
 - **R** - Record
 - **L** - Location
 - **G** - General

2. **Casing Material Codes:**
 - **B** - Steel
 - **C** - Cast
 - **G** - Grooved
 - **I** - Iron
 - **M** - Malleable
 - **P** - Plastic
 - **R** - Reinforced
 - **S** - Steel
 - **T** - Tin
 - **U** - Wood
 - **W** - Wire
 - **Z** - Other

3. **Type of Opening Codes:**
 - **F** - Fresh
 - **L** - Lueder
 - **M** - Mud
 - **P** - Packed
 - **R** - Rock
 - **S** - Steel
 - **T** - Trench
 - **W** - Water
 - **X** - Other
 - **Z** - Zone

4. **Type of Material Codes for Openings:**
 - **B** - Brick
 - **C** - Cast
 - **G** - Grooved
 - **I** - Iron
 - **M** - Malleable
 - **P** - Plastic
 - **R** - Reinforced
 - **S** - Steel
 - **T** - Tin
 - **Z** - Other

Special Treatment
- **Casing:**
 - A: Iron, steel, wrought iron, pipe, other.
 - B: Iron, steel, wrought iron, pipe, other.
 - C: Concrete, grout, cement, asphalt, other.
 - D: Sand, gravel, stone, other.
 - E: Water, mud, other.
 - F: Air, gas, vacuum, other.
 - G: Slurry, mud, other.
 - H: Mechanized, excavator, other.
 - I: Diesel, electric, other.
 - J: Waterjet, water, other.
 - K: Drift, drift, other.
 - L: Shovel, shovel, other.
 - M: Drill, drill, other.

Notes:
- Special treatment above, below, between, joints, heads, valves, other.
<table>
<thead>
<tr>
<th>PRODUCTION DATA (1)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R = 134 146°</td>
<td>T = A D M</td>
<td>Entry No.</td>
<td>1472</td>
<td>Date</td>
<td>145 1 1</td>
<td>Source of Data</td>
<td>161</td>
<td>Discharge</td>
<td>150</td>
</tr>
<tr>
<td>Flowing, pumped</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method of Measurement</td>
<td>152</td>
<td>B C E F M O P R T U V W Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Better, correct, estimated, flow, metering, pump, reading, recorded, reports, trajectory, water, other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production Level</td>
<td>153</td>
<td>A C E G H L M R S T V Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static level</td>
<td>154</td>
<td>A C E G H L M R S T V Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>272</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method of Measurement</td>
<td>156</td>
<td>A C E G H L M R S T V Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumping Period</td>
<td>157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIFT DATA (1)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R = 42°</td>
<td>T = A D M</td>
<td>Type of Lift</td>
<td>43</td>
<td>A B C J P R S T U V W Z</td>
<td></td>
<td>Entry No.</td>
<td>254</td>
<td>Pump Intake Setting</td>
<td>44</td>
</tr>
<tr>
<td>Power</td>
<td>45</td>
<td>D E G H L N W Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas, electric, gasoline, hand, L P gas, natural, windmill, other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horsepower</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAJOR PUMP DATA (2)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R = 47°</td>
<td>T = A D M</td>
<td>Type of Lift</td>
<td>43</td>
<td>A B C J P R S T U V W Z</td>
<td></td>
<td>Manufacturer of Pump</td>
<td>48</td>
<td>Serial No. of Pump</td>
<td>49</td>
</tr>
<tr>
<td>Power Company</td>
<td>50</td>
<td>Name of Power Company</td>
<td>50</td>
<td>Power Meter No.</td>
<td>52</td>
<td>Pump Rating</td>
<td>53</td>
<td>Person or Company Who Maintains the Pump</td>
<td>54</td>
</tr>
<tr>
<td>Capacity</td>
<td>256</td>
<td>Additional Lift</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STANDBY POWER DATA (2)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>See LIFT DATA for code of fields 43 and 56 below</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVAILABLE LOG DATA (1)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R = 198°</td>
<td>T = A D M</td>
<td>New Card for Each Log Type</td>
<td>Same R & T</td>
<td>Type of Log</td>
<td>199</td>
<td>Begin Depth</td>
<td>200</td>
<td>End Depth</td>
<td>201</td>
</tr>
<tr>
<td>Source of Data</td>
<td>202</td>
<td>Frequency of Collection</td>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WATER QUALITY DATA COLLECTION (1)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R = 114°</td>
<td>T = A D M</td>
<td>Begin Date</td>
<td>315</td>
<td>End Date</td>
<td>116</td>
<td>Source Agency</td>
<td>117</td>
<td>Type of Analysis</td>
<td>120</td>
</tr>
<tr>
<td>Frequency of Collection</td>
<td>118</td>
<td>Network Site</td>
<td>257</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WATER LEVEL DATA COLLECTION (1)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R = 121°</td>
<td>T = A D M</td>
<td>Begin Date</td>
<td>122</td>
<td>End Date</td>
<td>123</td>
<td>Source Agency</td>
<td>124</td>
<td>Type of Analysis</td>
<td>123</td>
</tr>
<tr>
<td>Frequency of Collection</td>
<td>125</td>
<td>Network Site</td>
<td>258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WATER PUMPAGE/THRESHOLD DATA COLLECTION (1)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R = 131°</td>
<td>T = A D M</td>
<td>Begin Date</td>
<td>132</td>
<td>End Date</td>
<td>139</td>
<td>Source Agency</td>
<td>130</td>
<td>Method of Collection</td>
<td>133</td>
</tr>
<tr>
<td>Frequency of Collection</td>
<td>134</td>
<td>Network Site</td>
<td>259</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OTHER DATA AVAILABLE (1)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R = 180°</td>
<td>T = A D M</td>
<td>Type of Data</td>
<td>198</td>
<td>New Card Same R & T</td>
<td>198</td>
<td>Format</td>
<td>251</td>
<td>Frequency</td>
<td>261</td>
</tr>
</tbody>
</table>

FOOT NOTES:

1. Source of Data Codes:
 - SDGARBCZ
 - Reporting, drill, owner, other par's, other logs, geologist, other agency

2. Type of Log Codes:
 - A B C D E F G H I J K L M N O P Q R S T U V W Z
 - Time, electric, gas, hand, L P gas, natural, windmill, other

3. Frequency of Collection Codes:
 - ABCDFIMNSWZ
 - Annual, bi-monthly, continuous, daily, semi-monthly, monthly, semi-annual, semi-monthly, monthly

4. Type of Quality Analysis Codes:
 - ABCDEFGHJKLMNZ
 - Physical, chemical, toxic, particulate, nutrients, algal, other, water, other, chemical elements
Aquifer Data (1)

<table>
<thead>
<tr>
<th>Entry No</th>
<th>Depth to Top</th>
<th>Lithology</th>
<th>Lithologic Modifier</th>
<th>% Water Contributed</th>
</tr>
</thead>
<tbody>
<tr>
<td>256 F</td>
<td>51</td>
<td>60</td>
<td>1</td>
<td>132</td>
</tr>
</tbody>
</table>

Aquifer Data (2)

<table>
<thead>
<tr>
<th>Entry No</th>
<th>Depth to Top</th>
<th>Lithology</th>
<th>Lithologic Modifier</th>
<th>% Water Contributed</th>
</tr>
</thead>
<tbody>
<tr>
<td>256 F</td>
<td>51</td>
<td>60</td>
<td>1</td>
<td>132</td>
</tr>
</tbody>
</table>

Pertinent Remarks

- New Card Same R&T
- 185
- 185
- 185

Notes: